

Information Technology Systems

PHP Development Frameworks

THE QUEST FOR THE HOLY GRAIL

Made by: Ruben Marques

Student #: 20162078

Supervisor: Prof. José Vasconcelos

Barcarena,

Information Technology Systems

PHP Development Frameworks

THE QUEST FOR THE HOLY GRAIL

Made by: Ruben Marques

Student #: 20162078

Supervisor: Prof. José Vasconcelos

Barcarena,

Executive Summary

This work studies the most used PHP frameworks in the market and analyzes their pros and

cons. After the analysis the author will be creating a requirement list of a new framework

and a prototype of the new framework is proposed.

Key-Words: PHP, Frameworks, MVC, Development, Coding

PAGE 1

Contents
Chapter 1 – Framework ... 5

1.1 Introduction .. 5

1.1.1 Investigation Question .. 6

1.1.2 Objectives ... 6

1.1.3 Document organization .. 6

1.2 Ethical Aspects... 6

1.3 Scheduling ... 6

1.4 Resources and Cost.. 7

Chapter 2 - Literature Review .. 8

2.1 What is PHP ... 8

2.2 What is a Software Framework .. 8

2.3 Framework Comparison... 9

2.3.1 Laravel Framework ... 10

2.3.2 Symfony Framework ... 11

2.3.3 CodeIgniter Framework .. 11

2.3.4 Yii Framework ... 12

2.3.5 CakePHP Framework ... 12

2.4 Common PHP Framework problems .. 12

2.5 What they have in common ... 13

2.6 Three-Tier architecture .. 15

2.7 MVC .. 16

2.7.1 The Model .. 18

2.7.2 The View ... 18

2.7.3 The Controller ... 18

Chapter 3 – Methodology .. 20

3.1 Methodology Approach ... 20

3.2 Design Science Reasearch (DSR) ... 20

3.2.1 Awareness of Problem .. 21

3.2.2 Suggestion .. 21

3.2.3 Development .. 22

3.2.4 Evaluation ... 22

3.2.5 Conclusion .. 23

3.3 SWEBOK .. 23

Chapter 4 - Solution Design ... 24

PAGE 2

4.1 Architecture Requirements .. 24

4.2 MVC adaptation .. 24

4.2.1 Hierarchical MVC .. 25

4.2.2 Definitions .. 26

4.3 Requirements .. 28

4.3.1 Non-Functional Requirements .. 28

4.3.2 Functional Requirements .. 28

4.3.3 Use Cases .. 29

4.3.4 Class Diagram Framework Concept ... 30

Chapter 5 - DragonPHP.. 32

5.1 How to install, DEPLOY and run it .. 32

5.2 Multiple Projects In a Single Framework .. 34

5.2.1 Multiple Projects Code .. 35

5.3 How does routing works .. 35

5.3.1 Custom Routing .. 36

5.3 Security and Permissions Manager .. 37

5.3.1 Permissions Manager .. 37

5.4 CRUD Generator and Definition Files ... 39

5.4.1 How to create or update our crud ... 41

5.4.2 Why creating CRUD with definition files .. 42

5.4.3 Definition files, more than just simple CRUD ... 42

5.5 Trying to automate documentation ... 43

5.6 How to write PHP/HTML code in DragonPHP ... 44

5.6.1 Interface code built with twig ... 44

5.6.2 Engine code PHP/MySQL ... 45

Chapter 6 - Initial Developers Opinion ... 47

Chapter 7 – Conclusion.. 48

Chapter 8 - Bibliography .. 49

Figure Index

Figure 1 - Percentages of websites using server-side programming languages (w3Techs,

2019) .. 5

Figure 2 - Schedule breakdown ... 7

PAGE 3

Figure 4 - Distribution of Frameworks by usage (Google Trends, 2018) 9

Figure 5 - Distribution of top Frameworks worldwide on the left and showing Portugal

preferences on the right (Google Trends, 2018) .. 10

Figure 6 - MVC diagram ... 17

Figure 7 - DSR diagram (Vaishnavi, 2008) ... 21

Figure 8 - H-D-MVC ... 25

Figure 9 - Functionalities Use Case .. 29

Figure 10 - Class Diagram framework Concept (without methods) 30

Figure 11 - DragonPHP Zip File .. 32

Figure 12 - DragonPHP after unzip ... 32

Figure 13 - DragonPHP First Time access page ... 33

Figure 14 - DragonPHP Creating a new project .. 33

Figure 15 - DragonPHP List of available projects .. 34

Figure 16 - DragonPHP File Structure ... 35

Figure 17 - DragonPHP Controller Found ... 35

Figure 18 - DragonPHP Controller content ... 35

Figure 19 - DragonPHP Routing list .. 36

Figure 20 - DragonPHP Creating new route ... 37

Figure 21 - DragonPHP DB Schema for permissions ... 38

Figure 22 - DragonPHP list of profiles .. 38

Figure 23 - DragonPHP Insert form example .. 39

Figure 24 - DragonPHP controller example .. 39

Figure 25 - DragonPHP definition example 1.. 40

Figure 26 - DragonPHP definition example 2.. 40

Figure 27 - DragonPHP Form Builder ... 41

Figure 28 - DragonPHP Workflow Builder .. 42

Figure 29 - DragonPHP definition example 3.. 43

Figure 30 - DragonPHP Entities builder .. 43

Figure 31 - DragonPHP auto documentation .. 44

Figure 32 - DragonPHP skins structure ... 44

Figure 33 - DragonPHP skin template example .. 45

Figure 34 - DragonPHP custom controller php code example 1 .. 45

Figure 35 - DragonPHP custom controller php code example 2 .. 46

file:///C:/Users/Ruben/Desktop/Faculdade/trabalho%20final%20de%20curso/final.docx%23_Toc12473403
file:///C:/Users/Ruben/Desktop/Faculdade/trabalho%20final%20de%20curso/final.docx%23_Toc12473404
file:///C:/Users/Ruben/Desktop/Faculdade/trabalho%20final%20de%20curso/final.docx%23_Toc12473408
file:///C:/Users/Ruben/Desktop/Faculdade/trabalho%20final%20de%20curso/final.docx%23_Toc12473409
file:///C:/Users/Ruben/Desktop/Faculdade/trabalho%20final%20de%20curso/final.docx%23_Toc12473410
file:///C:/Users/Ruben/Desktop/Faculdade/trabalho%20final%20de%20curso/final.docx%23_Toc12473418
file:///C:/Users/Ruben/Desktop/Faculdade/trabalho%20final%20de%20curso/final.docx%23_Toc12473421

PAGE 4

PAGE 5

Chapter 1 – Framework

1.1 INTRODUCTION

PHP programming language for quite some time was not considered as a sufficiently serious

language for large Web application development making it mostly used for small projects or

prototypes, and thus, leaving serious platform and software development to more elitist

languages like Java, Ruby or Python.

The three languages referenced above had a big advantage in regards to PHP which was the

fact that each of those languages only had one serious framework to work on making their

development most cohesive, more easy to understand and stronger. Java has Spring, Python

has Django and Ruby has Ruby on Rails. On the other hand PHP has, and had several dozens

of frameworks, and each making their code different and impossible to integrate between

them.

The most famous frameworks for PHP, according to Google Trends (Google Trend, 2019), are

Laravel, Symfony, CakePHP, Zend Framework and Code Igniter, but aside from Laravel which

has a big market reference every other framework has a small market percentage. In fact

there are 42 known different frameworks in PHP and hundreds of less known ones

(https://en.wikipedia.org/wiki/Category:PHP_frameworks, 2018)

If we look only to the numbers above we would conclude that the three initial languages

(Java, Python and Ruby) are more mature and best suited for web development due to their

continuity and big community.

But if we look at what languages are actually being used over the internet we see that in

2019 PHP is the chosen language with 79% usage for server side programming.

Figure 1 - Percentages of websites using server-side programming languages (w3Techs,
2019)

PAGE 6

This discovery was the origin for this paper. The fact that PHP is still largely used it means

that it is in fact a good language, but, the fact that every year a new framework appears on

the market shows that, although there are 42 different frameworks for PHP, there is none

which can seduce the market enough to be considered a standard.

Within this work we will be reviewing each of the top market frameworks, analyze them and

understanding their pros and cons.

After this analysis we will be creating the requirements to build a new framework which can

use all the good parts of the existing frameworks and improve them while still trying to keep

it simple.

1.1.1 INVESTIGATION QUESTION

 Can a PHP Framework be developed without the drawbacks of the most popular

frameworks in the market?

1.1.2 OBJECTIVES

 Study why there are so many PHP frameworks

 Knowing the most used frameworks in the market

 Understanding the pros and cons of each framework

 Understanding MVC pattern

 Knowing what the experience developers say about current frameworks

 Creating a new PHP Framework

1.1.3 DOCUMENT ORGANIZATION

This work in segmented in chapters and numbered topics to allow a good reading. We will

start by a literature revision and then our solution architecture and requirements.

1.2 ETHICAL ASPECTS

There are no ethical aspects to consider in this work.

1.3 SCHEDULING

Below is the scheduling for the project which has been updated during the development of

this document:

PAGE 7

Figure 2 - Schedule breakdown

1.4 RESOURCES AND COST

There will not be any external cost or any resource used aside from the author work.

TASK NAME START DATE
DAY OF THE

MONTH
END DATE

DURATION

(WORK DAYS)

DAYS

COMPLETE

DAYS

REMAINING

PERCENT

COMPLETE

Find Topic 10/1/2018 1 10/3/2018 2 2 0 100%

Literature Search 10/2/2018 2 10/5/2018 3 3 0 100%

Literature Review 10/3/2018 3 12/1/2018 59 59 0 100%

Paper Creation 11/1/2018 1 12/21/2018 50 50 0 100%

Compile list of functionalities 12/1/2018 1 12/11/2018 10 10 0 100%

Interviews with developers to know what is needed 12/10/2018 10 12/13/2018 3 3 0 100%

Write requirements 12/12/2018 12 12/19/2018 7 7 0 100%

Document Revision 12/12/2018 12 12/21/2018 9 9 0 100%

Create Framework Core 1/15/2019 15 2/2/2019 18 18 0 100%

Develop requested functionalities 2/1/2019 1 4/22/2019 80 80 0 100%

Backoffice skin development 2/23/2019 23 2/27/2019 4 4 0 100%

Analyze Results 5/1/2019 1 5/6/2019 5 5 0 100%

Write final consideration 5/10/2019 10 6/1/2019 22 22 0 100%

Framework

Requirements Creation

Framework Development

Results

PAGE 8

Chapter 2 - Literature Review

2.1 WHAT IS PHP

PHP is a server-side scripting language create by Rasmus Lerdorf in 1995 designed mainly for

Web development, most specifically has a templating engine for Homepages and not has a

programming language. Over time and due to community requests, PHP was extended to

have web forms and to be able to communicate with databases.

Early PHP was not intended to be a new programming language, and grew organically, with

Lerdorf noting in retrospect: "I don't know how to stop it, there was never any intent to write

a programming language [...] I have absolutely no idea how to write a programming

language, I just kept adding the next logical step on the way."

(https://en.wikipedia.org/wiki/PHP, s.d.)

The fact that PHP was not originally designed, but instead was developed organically has led

to inconsistent naming of functions and inconsistent ordering of their parameters.

And because of that inconsistency the open source community started developing so many

different frameworks for PHP.

2.2 WHAT IS A SOFTWARE FRAMEWORK

According to Riehle, Dirk (2000) a Software Framework represents the domain as an abstract

design, consisting of abstract classes (or interfaces).

The abstract design is more than a set of classes, because it defines how instances of the

classes are allowed to collaborate with each other at runtime. Effectively, it acts as a

skeleton, or a scaffolding, that determines how framework objects relate to each other.

A framework comes with reusable implementations in the form of abstract and concrete

class implementations. Abstract implementations are abstract classes that implement parts

of a framework abstraction (as expressed by an abstract class or interface), but leave crucial

implementation decisions to subclasses.

Frameworks use normally the principle of Design by Primitives. Design by Primitives bases a

class implementation on a small set of primitive operations that are left open for

implementation through subclasses. Concrete subclasses implement these operations so

that they can be instantiated and used without further sub-classing.

Frameworks have key distinguishing features that separate them from normal libraries:

 Inversion of control: In a framework, unlike in libraries or in standard user

applications, the overall program's flow of control is not dictated by the caller, but

by the framework.

 Extensibility: A user can extend the framework - usually by selective overriding; or

programmers can add specialized user code to provide specific functionality.

PAGE 9

 Non-modifiable framework code: The framework code, in general, is not supposed

to be modified, while accepting user-implemented extensions. In other words, users

can extend the framework, but should not modify its code.

How it beneficial to developers?

 Speeds up the development process by automatically creating core functionalities

like CRUD.

 Follows MVC(Model-View-Controller) architecture.

 Offers many input and output filtering functions which adds an additional security

layer to your web applications.

 Have their own specific debugging methods.

 Easy to organize your code and file.

 Better suitable for teamwork.

2.3 FRAMEWORK COMPARISON

From the longest list of available PHP Frameworks, here are the top 5 based on the recent

analysis on Google Trends by November of 2018.

Figure 3 - Distribution of Frameworks by usage (Google Trends, 2018)

PAGE 10

Figure 4 - Distribution of top Frameworks worldwide on the left and showing Portugal
preferences on the right (Google Trends, 2018)

Based on the framework distribution seen in Figure 3 - Distribution of Frameworks by usage

(Google Trends, 2018) a small description of each of the top frameworks were done. In the

next chapters we will try to in a very high level detail about each of those frameworks.

2.3.1 Laravel Framework

From the Figure 4 - Distribution of top Frameworks worldwide on the left and showing

Portugal preferences on the right (Google Trends, 2018), it’s clear that Laravel holds the first

place of all the other PHP Frameworks. Laravel is a free and open-source framework that

follows an MVC Pattern, created by Taylor Otwell as a better alternative to Symfony.

Popular Versions: 5.1 ,5.5

Latest Version: 5.6

Required PHP Version: 5.5.9

Key benefits of Laravel

 Laravel Framework offers many specific packages such as,

 A lightweight template engine called as “Blade” – Helps you in different tasks like

authentication, caching, sessions, routing, queuing and more.

 Artisan – A built-in command line tool, allows you to perform the most of the

tedious and repetitive task.

 MVC Architecture – Allows you to speed up the development process and improve

performance.

 Unit Testing – Lets you run many tests, ensure that the new changes won’t affect

any other thing in the web application.

 Eloquent ORM – Gives the ability to issue database queries in PHP syntax & avoids

the hassle of writing SQL code.

 Security – Laravel offers you with a built-in security. It uses “Bcrypt Hashing

Algorithm” to better secure your passwords.

PAGE 11

2.3.2 Symfony Framework

The next most recognized PHP Framework in the list is Symfony. It is a reliable, modular and

high performing framework developed by Sensio Labs with an aim to speed up the creation

and maintenance of web applications.

Latest Version: 4.1 (Support up to Jan 2019)

Popular Version: 3.4 (Support up to Nov 2020)

Required PHP version: 5.5.9

Key benefits of Symfony

 Offers High Performance due to the use of Bytecode caching.

 PHP libraries are reusable, which helps in different tasks like routing, authentication,

templating, object configuration and more.

 Well documented and excellent support system.

 Easy to use and maintain.

2.3.3 CodeIgniter Framework

The next framework in our list is CodeIgniter. It is a simple, flexible, lightweight and easy to

use free PHP framework created by Rick Ellis. CodeIgniter is often known for its speed when

compared to other Frameworks.

Latest version: 3.1.9

Legacy version: 2.x

Required PHP version: 5.4

Key benefits of CodeIgniter

 Offers a strong security as it includes built-in protection against XSS, CSRF such

attacks.

 User-friendly interface lets you develop a dynamic, flexible and secure web

application.

 Exceptional performance capabilities and outperforms most of the other

frameworks.

 Provides you with a clear, easy to understand documentation, tutorials and user

guides.

 Easy to spot error functions.

PAGE 12

2.3.4 Yii Framework

The PHP Framework which occupies the 4th position in the list is Yii PHP Framework. It is a

fast, secure and high-performance PHP Framework, started as an attempt to overcome the

drawbacks of the PRADO Framework. Yii is known for its easy installation and extendibility.

Latest version: 2.0

Required PHP version: 5.1

Key benefits of Yii

 Generates code automatically for skeleton and CRUD application

 Works well with third-party applications

 Follows MVC design architecture and offers a strong caching support.

 Offers a short rapid development time

 One of the oldest PHP framework and provides support till data.

2.3.5 CakePHP Framework

Finally, the last Framework in our list is CakePHP. It is easy to learn with CRUD embedded in

it. It started, when a polish programmer Michal Tatarynowicz wrote a minimal version of

RAD in PHP.

Latest version: 3.6 (Red Velvet)

Required PHP version: 5.5.9

Key benefits of CakePHP

 Offers a built-in caching, authentication, database access, and more.

 Lets you prevent cross-site scripting and SQL Injection.

 Follows Zero configuration, so you no longer need to specify the library location or

site URL, everything is auto-detected.

 Easy to run the test to check the critical points of your web application.

2.4 COMMON PHP FRAMEWORK PROBLEMS

Although no paper was found stating why the current frameworks are not good, or why it is

hard to use them, there were several articles found in the internet written by experience

developers stating several reasons why framework A or framework B are not good.

The most referred reasons are:

 Big learning curve: Most frameworks require you to read a lot of documentation to

even do a simple CRUD;

PAGE 13

 Hard to install an run it: One of he common complains within the community and in

the interviews done regarding the above frameworks is the fact that it requires

some knowledge in order to install and do the first setup making the entrance

barrier harder for them.

 Limit control: Although most frameworks provides methods to build some

functionalities if the developer tries to change the behavior or small details of those

functionalities it is close to impossible;

 Requires a notebook to do simple commands: Most frameworks currently works by

building, enabling and / or configuring its framework via CLI (Command Line

Interface) making it hard to remember every single command;

 Not build to be a modular application: Due to the nature of MVC it becomes very

easy as time passes to start having bad coding across the application;

Maybe the most important comment comes from Rasmus Ledorf, creator of PHP

He went on to say:

“While they all suck. Everyone needs a framework. What everyone doesn’t need is a general

purpose framework. Nobody has a general problem. Everyone has a very specific problem

they’re trying to solve. And a general purpose framework, while it can solve it, it usually

solves it in a way that you get so many other things that you don’t need… that ends up being

done on every request.”

He goes onto recommend using “targeted frameworks” for targeted problems:

“Usually, I tell people to look for a targeted framework. So, if you have a problem that looks

a lot like a blogging problem. Maybe, WordPress should be your framework… if your problem

is very close to something WordPress can handle, chances are, you’ll be using most of

WordPress. There won’t be all these other general purpose things you won’t touch.”

2.5 WHAT THEY HAVE IN COMMON

By doing an analysis of the frameworks we conclude that there are some common technics

and patterns which all of the frameworks follow or, at least they try to adopt and adapt.

The table below shows the characteristics and common functionalities of each framework

(PHP Frameworks, 2018)

PAGE 14

MVC: Indicates whether the framework comes with inbuilt support for a Model-

ViewController setup.

Multiple DB's: Indicates whether the framework supports multiple databases without

having to change anything.

ORM: Indicates whether the framework supports an object-record mapper, usually an

implementation of ActiveRecord.

DB Objects: Indicates whether the framework includes other database objects, like a

TableGateWay.

Templates: Indicates whether the framework has an inbuilt template engine.

Caching: Indicates whether the framework includes a caching object or some way

other way of caching.

Validation: Indicates whether the framework has an inbuilt validation or filtering

component.

Ajax: Indicates whether the framework comes with inbuilt support for Ajax.

Auth Module: Indicates whether the framework has an inbuilt module for handling

user authentication.

Modules: Indicates whether the framework has other modules, like an RSS feed

parser, PDF module or anything else (useful).

EDP: Event Driven Programming.

CakePHP Symfony Laravel Zend CodeIgniter Yii

PHP5 Yes Yes Yes

PHP7 Yes Yes Yes Yes Yes Yes

MVC Yes Yes Yes Yes Yes Yes

Multiple DB's Yes Yes Yes Yes Yes Yes

ORM Yes Yes Yes Yes Yes

DB Objects Yes Yes Yes Yes Yes Yes

Templates Yes Yes Yes Yes

Caching Yes Yes Yes Yes Yes Yes

Validation Yes Yes Yes Yes Yes Yes

Ajax Yes Yes Yes Yes Yes

Auth Module Yes Yes Yes Yes Yes

Modules Yes Yes Yes Yes

EDP Yes

PAGE 15

2.6 THREE-TIER ARCHITECTURE

The objective of the three-tier architecture is to brake an application/solution into its

constituent parts, as follows:

 Presentation tier

 Application tier

 Data access tier

Presentation tier

This is the topmost level of the application. The presentation tier displays information

related to such services as browsing merchandise, purchasing and shopping cart contents. It

communicates with other tiers by which it puts out the results to the browser/client tier and

all other tiers in the network. In simple terms, it is a layer which users can access directly

(such as a web page, or an operating system's GUI).

Application tier (business logic, logic tier, or middle tier)

The logical tier is pulled out from the presentation tier and, as its own layer, it controls an

application’s functionality by performing detailed processing.

Data access tier

The data tier includes the data persistence mechanisms (database servers, file shares, etc.)

and the data access layer that encapsulates the persistence mechanisms and exposes the

data. The data access layer should provide an API to the application tier that exposes

methods of managing the stored data without exposing or creating dependencies on the

data storage mechanisms. Avoiding dependencies on the storage mechanisms allows for

updates or changes without the application tier clients being affected by or even aware of

the change. As with the separation of any tier, there are costs for implementation and often

costs to performance in exchange for improved scalability and maintainability.

Web development usage

In the web development field, three-tier is often used to refer to websites, commonly

electronic commerce websites, which are built using three tiers:

A front-end web server serving static content, and potentially some cached dynamic

content. In web-based application, front end is the content rendered by the browser. The

content may be static or generated dynamically.

A middle dynamic content processing and generation level application server (e.g., Symfony,

Spring, ASP.NET, Django, Rails, Node.js).

A back-end database or data store, comprising both data sets and the database

management system software that manages and provides access to the data.

PAGE 16

Within the application tier, where our solution will be mainly focused, we will be using a

variant of the design pattern MVC.

2.7 MVC

Web applications are composed of both Front end and back end technologies. Due to the

evolution of the World Wide Web and the fast pace in which it evolved, developers need to

use a large number of technologies to build a single Web Application. This resulted in

complex and often, difficult to maintain and fix, solutions.

Due to this, a web application is generally built by a team of specialized developers, each

working on its own technology and tier. HTML and CSS for the presentation layer, JavaScript

for client-side interaction,

PHP (or ASP, Java, Python, Pearl, Ruby, etc.) for server-side logic and MySQL (or Oracle

Database, Microsoft SQL Server, etc.) for data storage and management.

Each of these specialist needs to work with other specialized developers in such a way that

their code pieces fit inside the overall design of the application.

For example, the client-side (data presentation) developer needs to alter the HTML and CSS

code in such a way that he doesn’t break the server-side developers’ code that resides in the

same file. Also, when a database developer alters the schema for an application the server-

side developer may need to change a lot of code to make the application work.

The important thing to note here is that there is an acute need to separate presentation

from logic and data storage in an application. There are some application design paradigms

such as MVP (MVP, 2019) and MVVM (MVVM, 2019) offer solutions to this problem, but the

focus is still on the MVC pattern.

The MVC pattern

In this section we'll review the present standing of the analysis during this field and take a

glance at the literature behind the MVC pattern, describing the most useful elements of the

pattern.

The MVC style pattern was first unreal by Trygve Reenskaug within the Nineteen Seventies

at the Xerox Parc. According to him, “the essential purpose of MVC is to bridge the gap

between the human user's mental model and the digital model that exists in the computer”.

Later on, in 1988, the MVC paradigm was described in detail by Krasner and Pope in their

article “A cookbook for using the model-view controller user interface paradigm in Smalltalk-

80”, published in the Journal of ObjectOriented Programming.

They stress out that there are enormous benefits to be had if one builds applications with

modularity in mind. “Isolating functional units from each other as much as possible makes it

easier for the application designer to understand and modify each particular unit without

having to know everything about the other units.”

PAGE 17

An application is split into 3 main categories: the model of the most application domain, the

presentation of data therein model and user interaction.

The MVC pattern splits responsibilities into 3 main roles therefore with additional

economical collaboration.

These main roles are development, style and integration.

The development role is taken on by skilled programmers that are chargeable for the logic of

the application. They be sure of information querying, validation, process and additional.

The design role is for the developers that are chargeable for the appliance look and feel.

They show information that is fed from the developers functioning on the primary role.

The integration role gathers developers with the responsibility to connect the work of the

previous 2 roles.

The MVC style pattern is such a decent suitable net application development as a result of

they mix many technologies typically split into a group of layers. Also, MVC specific behavior

might be to send specific views to different types of user-agents.

“User interaction with an MVC application follows a natural cycle: the user takes an action,

and in response the application changes its data model and delivers an updated view to the

user. And then the cycle repeats. This is a very convenient fit for web applications delivered

as a series of HTTP requests and responses.”

Figure 5 - MVC diagram

PAGE 18

2.7.1 The Model

“The Model is the part of the system that manages all tasks associated with data: validation,

session state and management, data supply structure (database). The Model greatly reduces

the quantity of the code the developer has to write.

The Model layer is accountable with the business logic of associate application. it'll

encapsulate strategies to access data (databases, files, etc.) and can build a reusable

category library out there. sometimes a Model is constructed with information abstraction in

mind, validation and authentication.

Moreover, the Model is created of categories that outline the domain of interest. These

objects that belong to the domain typically times encapsulate information that's keep in

databases, however conjointly embrace code that's accustomed manipulate this data and

enforce business rules.

As a conclusion, the Model primarily handles information access abstraction and validation.

The Model holds strategies for interaction with totally different information

sources.”(Dragos-Paul Pop*, 2013)

2.7.2 The View

The view is accountable for graphical computer programming management. This implies all

forms, buttons, graphic elements and every different HTML parts that are within the

application. Views may also be accustomed generate RSS content for aggregators or Flash

displays. By separating the presentation from the logic of the application we tend to greatly

cut back the danger of errors occurrence once the designer decides to change the interface

of that application. At the same time, the developers’ job is greatly reduced because he will

no longer need to see HTML code parts, style parts and graphical parts.

The view layer is what will ordinarily be referred to as internet style or templates. It controls

the approach information is displayed and how the user interacts with it. It conjointly

provides ways that for information gathering from the users. The technologies that are

mainly employed in views are HTML, CSS and JavaScript. (Dragos-Paul Pop*, 2013)

2.7.3 The Controller

The Controller is to blame for event handling. These events may be triggered by either a user

interacting with the application or by a system method. A controller accepts requests and

prepares the information for a response. It is also responsible with establishing the format of

that response. The Controller interacts with the Model so that he as to retrieve the required

information and generates the read. This method is additionally called associate action or a

verb. Once the request arrives at the server, the MVC framework dispatches it to a

technique during a controller supported the URL.

The Controller binds all application logic and combines the show within the read with the

practicality within the Model. it's accountable with information retrieval from the read and

PAGE 19

with establishing the execution path for the application. The Controller can access the Model

practicality and it'll interpret the information received so it may be displayed by the read. it's

conjointly accountable with error handling.

A Controller manages the link between a read and a Model. It responds to user requests,

interacts with the Model and decides that read ought to be generated and displayed.

(Dragos-Paul Pop*, 2013)

PAGE 20

Chapter 3 – Methodology

3.1 METHODOLOGY APPROACH

There are several methods of investigation which allows a wide choice of methodology to be

applied allowing the use of the one that best fits the area to be worked.

Thus, since there are several methods of investigation, there are also several methodological

approaches that can be adopted in research projects. Their choice is made based on the

nature of the problem and what is intended. Some of these methodological approaches are:

Design Science Research (DSR), Research-Action Method, Delphi Method, Case Study

Method, etc...

However, the one that fits this research project will be the DSR methodology which will

enable the author to create and evaluate an artifact with the intention of solving identified

problems.

Along side with DSR, the author also used SWEBOK, Software Engineering Body of

Knowledge, most specifically the three areas of knowledge regarding Requirements, Design

and Construction.

3.2 DESIGN SCIENCE REASEARCH (DSR)

Due to the nature of the research it was chosen to use the Design Science Research

methodology adapted by Vijay K. Vaishnavi and William Kuechler Jr.

Design science research focuses on the development and performance of (designed)

artifacts with the explicit intention of improving the functional performance of the artifact.

Design science research is typically applied to categories of artifacts including algorithms,

human/computer interfaces, design methodologies (including process models) and

languages. Its application is most notable in the Engineering and Computer Science

disciplines, though is not restricted to these and can be found in many disciplines and fields.

In design science research, as opposed to explanatory science research, academic research

objectives are of a more pragmatic nature. Research in these disciplines can be seen as a

quest for understanding and improving human performance. Such renowned research

institutions as MIT’s Media Lab, Stanford's Centre for Design Research, Carnegie-Mellon's

Software Engineering Institute, Xerox’s PARC and Brunel’s Organization and System Design

Centre use the Design Science Research approach.

(https://en.wikipedia.org/wiki/Design_science_(methodology), s.d.)

PAGE 21

Figure 6 - DSR diagram (Vaishnavi, 2008)

Below are the process steps explanation described by Vijay K. Vaishnavi and William

Kuechler Jr.

3.2.1 Awareness of Problem

An awareness of an interesting problem can come from multiple sources: new developments

in industry or in a reference discipline. Reading in an allied discipline may also provide the

opportunity for application of new findings to the researcher’s field. The output of this

phase is a Proposal, formal or informal, for a new research effort.

3.2.2 Suggestion

The Suggestion phase follows immediately behind the Proposal and is intimately connected

with it, as the dotted line around Proposal and Tentative Design (the output of the

Suggestion phase) indicates. Indeed, in any formal proposal for design science research, such

as one to be made to the NSF (National Science Foundation) or an industry sponsor, a

Tentative Design and likely the performance of a prototype based on that design would be

an integral part of the Proposal. Moreover, if after consideration of an interesting problem, a

Tentative Design does not present itself to the researcher, the idea (Proposal) will be set

aside. Suggestion is an essentially creative step wherein new functionality is envisioned

based on a novel configuration of either existing or new and existing elements. The step has

been criticized as introducing no repeatability into the design science research method;

human creativity is still a poorly understood cognitive process. However, the step has

PAGE 22

necessary analogues in all research methods; for example, in positivist research, creativity is

inherent in the leap from curiosity about organizational phenomena to the development of

appropriate constructs that operationalize the phenomena and an appropriate research

design for their measurement.

3.2.3 Development

The Tentative Design is further developed and implemented in this phase. Elaboration of the

Tentative Design into complete design requires creative effort. The techniques for

implementation will of course vary, depending on the artifact to be constructed. An

algorithm may require construction of a formal proof. An expert system embodying novel

assumptions about human cognition in an area of interest will require software

development, probably using a high-level package or tool. The implementation itself can be

very pedestrian and need not involve novelty beyond the state-of-practice for the given

artifact; the novelty is primarily in the design, not the construction of the artifact.

3.2.4 Evaluation

Once constructed, the artifact is evaluated according to criteria that are always implicit and

frequently made explicit in the Proposal (Awareness of Problem phase). Deviations from

expectations, both quantitative and qualitative, are carefully noted and must be tentatively

explained. That is, the evaluation phase contains an analytic sub-phase in which hypotheses

are made about the behavior of the artifact. This phase exposes an epistemic fluidity that is

in stark contrast to a strict interpretation of the positivist stance. At an equivalent point in

positivist research, analysis either confirms or contradicts a hypothesis. Essentially, save for

some consideration of future work as may be indicated by experimental results, the research

effort is finished. For the design science researcher, by contrast, things are just getting

interesting. Rarely, in design science research, are initial hypotheses concerning behavior

completely borne out. Instead, the evaluation phase results and additional information

gained in the construction and running of the artifact are brought together and fed back to

another round of Suggestion (cf. the circumscription arrows of Figures 2.3 and 2.5). The

explanatory hypotheses, which are quite broad, are rarely discarded; rather, they are

modified to be in accord with the new observations. This suggests a new design, frequently

preceded by new library research in directions suggested by deviations from theoretical

performance. (Design science researchers seem to share Allen Newell’s concept [from

cognitive science] of theories as complex, robust nomological networks.) This concept has

been observed by philosophers of science in many communities (Lakatos, 1978); and

working from it, Newell suggests that theories are not like clay pigeons, to be blasted to bits

with the Popperian shotgun of falsification. Rather, they should be treated like doctoral

students. One corrects them when they err, and is hopeful they can amend their flawed

behavior and go on to be evermore useful and productive (Newell, 1990).

PAGE 23

3.2.5 Conclusion

This phase is the finale of a specific research effort. Typically, it is the result of satisficing;

that is, although there are still deviations in the behavior of the artifact from the (multiply)

revised hypothetical predictions, the results are adjudged “good enough.” Not only are the

results of the effort consolidated and “written up” at this phase, but the knowledge gained

in the effort is frequently categorized as either “firm” — facts that have been learned and

can be repeatedly applied or behavior that can be repeatedly invoked — or as “loose ends”

— anomalous behavior that defies explanation and may well serve as the subject of further

research.

3.3 SWEBOK

Software Engineering Body of Knowledge (SWEBOK Guide) was established between a

partnership between IEEE and ACM with the aim of promoting Software Engineering and to

create a set of guides about the areas of knowledge of SE.

The main objectives of SWEBOK are:

 Provide a consistent view of Software Engineering worldwide;

 Clear the boundaries of Software Engineering with respect to other disciplines such

as computer science, project management, computing, mathematics, among others;

 Characterize the contents of the Software Engineering discipline;

 Provide access to the topics of the knowledge body of Software Engineering;

 Provide a basis for curriculum development and individual certification;

 Serve as support material.

PAGE 24

Chapter 4 - Solution Design

In this chapter we will go thru the requirements needed for the solution and how it will be

built.

4.1 ARCHITECTURE REQUIREMENTS

The development of the framework must be based on the three-tier architecture and every

solution built upon the framework should maintain this design pattern. Within the

application tier we will want to use an adaptation of the MVC pattern.

4.2 MVC ADAPTATION

In this work we have analyzed what is the MVC pattern and how important is the usage of

the pattern on building scalable applications. And although it is a great design pattern and

highly used by the development community, the author believes that there are ways to

improve this pattern by introducing two new concepts: Hierarchy and Meta-Language.

Hierarchy must be built on top of the MVC pattern in order to avoid the big blocks of code

that normally go with this pattern. The framework must be able to have several levels of

each of the Model, View and Controller and each must be built using the extend paradigm of

the object-oriented program.

Another of the problems commonly seen in the MVC pattern is that, although it allows the

separation of code it also brings a problem for scalability and continuity of the applications,

mainly because applications grow and adapt as time changes and as such, new code blocks

PAGE 25

must be introduced and refactored. By adding a Meta language block in between we

guarantee that this Meta Language will maintain the same across the years and allows the

developers to refactor, enhance and improve their applications without the need to change

or brake anything within this meta language blocks.

This will evolve the MVC pattern into H-D-MVC (Hierarchy Definition, Model View

Controller).

Figure 7 - H-D-MVC

4.2.1 Hierarchical MVC

According to Ahmad, Zainal Arifin and Dyna Marisa Khairina, due to the MVC architecture

constraints, MVC developed into a more modular architecture called HMVC (Hierarchical

Model-View-Controller). (Ahmad)

HMVC split into sections per module. Each module has its own MVC layer, so that when

imported moved enough alone. Not only that, HMVC then allows a module has a derivative

like hierarchy. HMVC first applied to desktop applications.

From there, the author decided to apply the HMVC to web framework.

PAGE 26

HMVC (Hierarchical Model-View-Controller) Architecture consists of a layer of MVC (Model-

ViewController) which can have a hierarchical relationship derivative. HMVC is an MVC

pattern but a hierarchy in which the MVC implementation stored in specific modules so that

each module of the model, view, and controller itself.

HMVC architecture provide clear boundaries for each layer. Limiting layer is referred to as a

module (module). Because HMVC is a development of the MVC architecture, the term MVC

will continue to be used in its application. Each module has the MVC which stands

independently. A module will not interfere with other modules. By doing so, the module is

said to have clear boundaries.

When compared to the MVC architecture, HMVC architecture has several advantages,

namely:

1. Modularity: HMVC makes it easier to interchange chunks of code through

encapsulation of functionality.

2. Organization: HMVC allows each module to contain its own models, views, and

controllers directories, keeping related files contained.

3. Extensibility: By promoting modularity, HMVC allows systems to be more easily

extended by simply adding or replacing modules.

4. Reusability: Since modules can call each other, HMVC allows for code to be easily

reused.

4.2.2 Definitions

The final concept to be introduced in the H-D-MVC is the Definition, a Markup Language file

written in Yaml or Xml, similar to HTML which will be used as an abstraction layer to the

MVC.

A description of a Markup Language can be: “A (document) markup language is a modern

system for annotating a document in a way that is syntactically distinguishable from the text.

The idea and terminology evolved from the "marking up" of paper manuscripts, i.e., the

revision instructions by editors, traditionally written with a blue pencil on authors'

manuscripts. In digital media this ‘blue pencil instruction text’ was replaced by tags, that is,

instructions are expressed directly by tags or ‘instruction text encapsulated by tags’.”

(Wikipedia, 2019)

The objective of adding definitions to the HMVC model is to allow a faster, more simplistic

and backwards compatible approach to create MVC components. By using a Markup

Language which works as an upper level of MVC we simplify the development process of the

most common functionalities of the framework, while allowing its development to be done

by any developer regardless of its experience.

This is done by usage of a natural language to define behaviors, looks and interactions of

every page and forms in our framework.

In a more pragmatic view, a definition is composed of several tags in a specific order, and

each tag has a very specific behavior. By using this markup language we can create a new

PAGE 27

level of abstraction in our framework and guarantee that the result of a page developed

with a Definition will always behave the same regardless of where it is run.

If we view an example taken from a definition in DragonPHP we can have a better glance of

its meaning:

This definition, when called, will create an HTML form which will be used to insert a new

user into our database. Since it is a layer to our MVC model what its being done by the

framework is to tell to the Model where to save the information (Database, in a table called

Users), which fields exists in our Users table (id, username and password) and their data

type (If it is a text, integer, varchar, etc…).

It will tell the Controller to load a specific template file (Skin Dragon and Template forms),

how to behave when accessing the page (Action: Insert).

Lastly it will tell our View how to construct the html code to be display, with, the

corresponding validation rules.

PAGE 28

The objective of the Definitions in DragonPHP is to allow developers to create any page

without having to write any HTML, CSS, JavaScript or PHP code. The behavior of each tag is

then done by default by the framework without the need of any interference of the

developers, nevertheless, since this information is being sent to our MVC model, it means

that if needed, developers can manipulate its data before rendering any page.

One of the main goals of having this definition files, is that, it allows DragonPHP to have

several WYSIWYG tools to create forms and workflows with a clean interface and without

any fear of having code problems.

4.3 REQUIREMENTS

By studying the top frameworks on the market and by the usage of surveys, below are the

most important requirements found on Chapter 2 of this paper that the solution must have.

4.3.1 Non-Functional Requirements

Non-functional requirements will focus of the quality, scalability and usability of the

framework.

- Performance: The framework must be built to handle hundreds of requests

simultaneously and to handle / present several millions of records in its database

within a reasonable amount of time.

- Usability: All functionalities built must be accessed via a web interface without the

need of a command line interface (CLI). These functionalities must be built using the

UX market standards.

- Scalability: Applications built on top of the framework must have the ability to

enhance the system by adding new functionality at minimal effort.

- Security: The framework must be able to protect the applications built on top

against XSS and SQL injections attacks.

- Portability: The framework and the applications built on top must be accessed and

visualized in a desktop environment and on a mobile.

- Singleton: The objective of the framework is to allow the developers to build

applications on top of the framework, and the framework must be able to

encompass multiple different applications in the same framework instance.

4.3.2 Functional Requirements

Many of the functional requirements proposed for this work were gathered from the

characteristics and functionalities studied on Chapter 2 of this paper, however with a

interface and usability difference since most frameworks studied on Chapter 2 did the below

functionalities without an interface, but rather via command line, or by code.

To have a fast application development using the framework, there are some functional

requirements which are essential for the framework, such as:

PAGE 29

- Form Builder: The developer must be able to build CRUD forms with a WYSIWYG

(What you see is what you get) interface. This CRUD forms must be done in a fast

and simple way to allow everyone, even non-experience developers, to build, create

and maintain multiple forms.

- Workflow Builder: One of the most common problems developers face when

developing applications is the usage of multiple workflow within their applications.

The framework must provide an easy way to be able to create custom workflows

based on BPM to allow the use of various methods to discover, model, analyze,

measure, improve, optimize, and automate business processes.

- Auto-Documentation: The framework must be able to auto document as much as

possible every application built on top of it by creating entity schemas, database

schemas, and code comment analysis.

- Database Abstraction: The framework must allow the usage of any of the common

databases on the market such as MySQL, Oracle, PostgreSQL, MariaDB.

- Permission Management: The framework must provide a functionality to manage

permissions in a simple and intuitive way.

- Pretty URLs: The applications built on top of the framework must have a routing

system to allow the pretty URL functionality.

4.3.3 Use Cases

Below is a use case of the mandatory functionalities that the framework needs to make

available for the developers.

Figure 8 - Functionalities Use Case

PAGE 30

4.3.4 CLASS DIAGRAM FRAMEWORK CONCEPT

In this diagram is a concept of how the framework should behave when a request is done.

Figure 9 - Class Diagram framework Concept (without methods)

PAGE 31

PAGE 32

Chapter 5 - DragonPHP

Over the course of some months the author was able to create a prototype of his PHP

Framework called DragonPHP.

In the next topics we will be going by each of the functionalities developed and how it tried

to overcome the problems found with other frameworks while still being able to maintain

most of the key elements that makes those frameworks good.

By the end of this paper we will conclude that it is in fact possible to create a framework that

can be used and appeal to both junior and senior developers.

5.1 HOW TO INSTALL, DEPLOY AND RUN IT

One of the biggest complains found when speaking with junior developers was the fact that

the top frameworks in the market are hard to install, and requires knowledge in several

technologies (bash, composer, php, etc…)

This made some of the most junior developers to give up on those frameworks because they

couldn’t have it running properly.

With DragonPHP the author made the deployment as easy as possible.

1- Install one of the WebServer available on the internet such as:

a. Wamp: http://www.wampserver.com/en/

b. Xampp: https://www.apachefriends.org/index.html

c. Nginx: https://www.nginx.com/

2- Download and unzip DragonPHP framework to the www folder that the WebServer

is serving:

3- Open the browser and access the localhost. The framework will detect it is the first

time running it and it will present two pages with simple configurations in order to

Figure 10 - DragonPHP Zip File Figure 11 - DragonPHP after unzip

http://www.wampserver.com/en/
https://www.apachefriends.org/index.html
https://www.nginx.com/

PAGE 33

start working with the framework. In the first page the framework will ask for

database connection information: Server Name, Username and Password:

Figure 12 - DragonPHP First Time access page

The information on the right side will be automatically populated and the user will

not need to do anything.

After clicking on Save Config, and if the framework can connect to the database, the

framework will ask for information regarding the first project:

Figure 13 - DragonPHP Creating a new project

PAGE 34

After submitting the information the project will be configured and ready to be

used.

Figure 14 - DragonPHP List of available projects

5.2 MULTIPLE PROJECTS IN A SINGLE FRAMEWORK

DragonPHP was built in such a way that allows a developer to have a single instance of the

Framework running while still having multiple different projects with different databases

running in the same instance.

To view all active projects the developer may go to the framework development backoffice,

i.e. http://localhost/dev/ and access the option on the top: Config -> Projects

In that page there will be listed all projects currently configured in the framework. In order

to witch between projects the developer will have the option “Make default project”

beneath each project card.

http://localhost/dev/

PAGE 35

5.2.1 Multiple Projects Code

Below is the file structure of DragonPHP after installing it:

The folders Config, Dragon and Tmp will be used by

DragonPHP and that’s where all the framework

code resign.

With in the Specific folder (marked in red) we will

have one folder for each project. Within that folder

we will have specific code for that specific project.

Marked in blue we will have the folder Modules

and Skins which are available for all projects.

This allows us when building an application using

DragonPHP to have generic modules which are

used in all projects, for example a module to

manage Users, and to have within each project only

the code specific tailored to that project.

5.3 HOW DOES ROUTING WORKS

Routing is one of the most important parts of a framework, and in DragonPHP the author

tried to make it simple and straight forward in terms of both configuration and usage.

By accessing a specific URL, i.e.: http://localhost/pickup/list the framework will, by default,

break it in two or more sections. In this URL the first section is “pickup”, which will be the

controller, and the second section is the method “list”.

In order to show the correct page the framework

will first search for the controller file within the

specific path, if found it will check if the method

exists within that controller, if both exists then

that is what is going to be present. If the

framework fails in one of the searches then it falls

back to the path /modules/

In this example the framework found the file

pickup.controller.php within the specific path

with the corresponding method, and as such, that

is what is going to be executed.

Figure 15 - DragonPHP File Structure

Figure 16 - DragonPHP Controller Found

Figure 17 - DragonPHP Controller
content

http://localhost/pickup/list

PAGE 36

When the controller / method is found within a specific project, DragonPHP by default will

use the concept of Inheritance in order to show the page.

This means that we can have a generic module created in the /modules/ path and only have

specific code to our project in our project directory

5.3.1 Custom Routing

As seen in the previous section by default the framework will break the URL in two or more

sections in order to search for a controller and a method to present the page.

But by using DragonPHP Custom Routing configurations we can configure custom paths and

tell the framework where it should go. To access the Routing configurations the developer

may go to the developer backoffice and access the Security -> Routing option found on the

top bar.

Figure 18 - DragonPHP Routing list

In the above screenshot we configured the url http://localhost/testing to access the

controller “pickup” and the method “list”. This will mean that accessing

http://localhost/pickups/list or http://localhost/testing will result in the same output, but,

with a custom URL.

To add a new routing the developer can click on “New Route” and a form as the one below

will appear with simple attributes:

http://localhost/testing
http://localhost/pickups/list
http://localhost/testing

PAGE 37

Figure 19 - DragonPHP Creating new route

5.3 SECURITY AND PERMISSIONS MANAGER

Security is always one of the most important parts of any framework. In DragonPHP every

request will be parsed and several security parses will be done.

The most important security parses will be:

1- Does the logged user have access to view the url he’s requesting?

2- By using several algorithms all GET and POST arguments will be parsed in search of

SQL injections. If found the specified argument will be striped.

3- Except if specified by the developer every form created in DragonPHP will verify for

XSS in their inputs and textarea elements. If any has any type of XSS the framework

will strip those away before inserting them into the database.

5.3.1 Permissions Manager

As shown in the above figure (need to input the figure number!) when creating a new

routing the developer may choose or add a new “permission tag” to that routing. That tag

can be configured as a Positive or Negative permission.

This means that if the URL is not Public, if a user tries to access it the framework will:

1- Verify if the user has any tags associated to it which matches the Negative tags of

the URL. If the response is true, than it means that the user does not have access to

the URL.

2- If no negative tags were found, the framework will search for positive tags. If the

user does not have any of the positive tags needed than the user does not have

access to the URL.

PAGE 38

This approaches allows the developer to create a modular and flexible permission manager

in each of his applications.

Below is a database structure schematic of how permissions works:

Figure 20 - DragonPHP DB Schema for permissions

This means that there are several Profiles, and Several permissions tags. Each profile is

connected to one or more permission tags.

Each user can have one or more profiles.

In our example project we have the following configuration:

Figure 21 - DragonPHP list of profiles

Any profile without any permission tag is considered as a profile that can view and do

everything in the application. This means that the profile Administrator can access every

URL.

PAGE 39

The profile Regular User can only view and access URL which have the positive permission

“CAN_MANAGE_REQUESTS” and “CAN_MANAGE_STAKEHOLDERS”.

5.4 CRUD GENERATOR AND DEFINITION FILES

If we access the URL of our demo project http://localhost/pickups/insert we will have this

next result:

Figure 22 - DragonPHP Insert form example

This is the result of a simple Create action configured in the Framework. The way the

framework worked was that it found a controller: pickup.controller.php, in that controller a

method called insert, and it found a definition file called insert.pickups.yaml

Below is the code of each file:

1- Pickup.controller.php

Figure 23 - DragonPHP controller example

http://localhost/pickups/insert

PAGE 40

2- Insert.pickup.yaml

Figure 24 - DragonPHP definition example 1

As seen above both files seems to be very much stripped of any code. Since the method

insert has no special code the framework parsed the definition insert.pickup.yaml file to

know how to behave. In that file the framework understood that the page to be rendered

was a “insert” (action: insert), has a specific title “Insert Pickup” and includes everything

within the definition pickup.form.yaml.

If we view the contents of pickup.form.yaml we will now understand how the framework

knew what to render.

One the left figure we told the framework to use the table pickups and that the primary key

of the table is the id. We also specified that the page will have a submenu with two options

Figure 25 - DragonPHP definition example 2

PAGE 41

(New pickup and List All Pickups), we specified how the layout for the page would be

generated, a single tab, with two columns and several sections, each with its label.

On the right side we have the definition of the fields to be generated. The field “ID”, since it

is the primary key, its not meant to be inserted or updated (insertable / updatable both to

false), the field origin_id will have the label “Origin” the data type of that field will be a

integer and it will do a lookup to the table Stakholders, making it a foreign key to that table.

The edit_object to be generated will be a “HTML Select Box” and the field should be present

in the section “origin_section”.

This file, pickup.form.yaml, will have in this case, the definition of all fields of that specific

table. Definitions will also work with inheritance, which means that insert.pickups.yaml will

have all code of itself and all code of pickups.form.yaml, but giving preference to the first.

This allows us to have a generic definition per table with all fields and behaviors and if we

need to do small changes to a specific page we can include those specific conditions on the

latest definition file without doing any change to the parent one.

5.4.1 How to create or update our crud

There is two ways to create or update the crud definition files. Or by manually accessing the

file and changing its content, or by using the Form Builder tool available in the developer

backoffice.

This tool is meant to be a WYSIWYG with simple point and click in order to create new fields

or change the fields behavior:

Figure 26 - DragonPHP Form Builder

In the left side we have the configuration of the definition files and on the right side we have

a preview of how the page will appear to the end user.

PAGE 42

5.4.2 Why creating CRUD with definition files

By using definition files to generate our CRUD we simplify the development of any

application. Any non-developer or junior developer can create its own forms with little to no

knowledge of PHP, HTML, CSS and Javascript.

This allows for a very rapid development of pages such as Lists, Insert Forms, Edit Forms,

Delete Forms and Search Forms.

The fact that DragonPHP is using inheritance will also allow for modules to be created in a

generic way and each project can have its tiny tweaks without any knowledge of PHP or

need of hacks.

The last major point is the backwards compatibility. By using simple tags in the definition

files, i.e. “label” or “data_type” allows the framework to constantly grow and improve how it

is parsed and displayed while maintaining the fact that a label will always be a label,

regardless of how it is generated. This means that a project can be developed and still be

access after years of being developed and it will always behave the same.

5.4.3 Definition files, more than just simple CRUD

Aside from the CRUD seen above, this definition files can, and will be expanded to be able to

create more sophisticated functionalities.

One of this functionalities is the workflow. By accessing the developers backoffice and go to

Builder -> Workflow we have the next page:

Figure 27 - DragonPHP Workflow Builder

PAGE 43

This allows us to create workflow between pages in the application again with simple point

and click. Just like the CRUD pages we can also access the specific definition file generated

and change it manually:

5.5 TRYING TO AUTOMATE DOCUMENTATION

The above functionalities aims to allow development of the most common functionalities

found in any application easy and fast. But development is not only code, it is also

documentation. DragonPHP tries to help developers by trying to automate the

documentation. By parsing every file in the framework when it is being runned, and with a

low burden to process and rendering (~0.01 secs) the framework is able to build documents

as:

1- Entities Description and Relations:

Figure 29 - DragonPHP Entities builder

Figure 28 - DragonPHP definition example 3

PAGE 44

2- Tags created and used:

Figure 30 - DragonPHP auto documentation

In both examples the framework will try to autocomplete the documentation but still

allowing the developer to add more information or change it accordingly.

Next steps for the documentation are to create a database schema and php class/method

comments without the need of any interact from the developer.

5.6 HOW TO WRITE PHP/HTML CODE IN DRAGONPHP

Code in an application can be divided in two, interface (HTML/CSS/JS) and engine

(PHP/MySQL).

Below is the explanation on how to change and write your own code for those purposes.

5.6.1 Interface code built with twig

Each project has its default skin, and each page calls a specific template file. By navigating in

our source code to the folder /skins/ we encounter by default two available skins:

Figure 31 - DragonPHP skins structure

PAGE 45

Draco will be the skin used for our projects backoffice. Developers may change it or create

new skins. DragonPHP uses Twig templating engine in order to render the templates.

Figure 32 - DragonPHP skin template example

5.6.2 Engine code PHP/MySQL

As seen in section 5.4 when accessing a specific URL, DragonPHP will go over a specific

method within a controller. Developers may add any necessary PHP / MySQL code on those

Methods, below goes some examples:

1- Creating our own PHP code:

Figure 33 - DragonPHP custom controller php code example 1

PAGE 46

In this example we run a custom made PHP function, createVersion, before the

update action is performed, and we call the function sendInformationtoWebServices

after the update is done. And we leave the update of the record “parent::update()”

to the framework to do all its job.

2- Passing values from the database to the visuals

Figure 34 - DragonPHP custom controller php code example 2

In this example we use the global variable $db, which is an object of the database connector

instantiated by DragonPHP to grab the description of a pickup, and we send it back to the

skin by calling the global $skin and adding a new attribute to it.

Only after running our code, DragonPHP will generate the Insert form.

PAGE 47

Chapter 6 - Initial Developers Opinion

In order to understand if DragonPHP prototype was able to answer the issues found with

other frameworks, a small survey was sent to 10 developers, whereas 5 developers had less

than 2 years of experience (Junior Developers) and the remaining 5 more than 2 years.

The preliminary results of the survey was satisfactory and it encourages the author to

continue with the Framework and perfect the job.

Below is the result with calculated averages from all 10 responses:

Question Average (1/5)

Was DragonPHP easy to install? 5

Were you able to create pages in a fast way? 5

Do you feel you still have the control of your code? 4

Do you use the form builder to generate your forms? 3

Do you feel auto-documentation is an essencial part? 4

Was the security module easy to configure? 4

Is the available documentation good? 2

Would you suggest DragonPHP to another developer? 5

Dragon PHP Survey Results (10 Surveys answered)

PAGE 48

Chapter 7 – Conclusion

There are too many PHP frameworks in the market, and they all appeal to a specific group of

developers or to a more junior developer or, to a more senior developer, but, almost none

of them tries to appeal to both groups.

By studying what each top framework has and by interviewing developers the author was

able to come with a new development pattern HDMVC which allows for faster and more

agile development of applications in comparison with the MVC model.

DragonPHP was also able to remove the complexity of installing a framework by just

unpacking its content to a WWW folder and without the need of any third-party software,

making the entry difficulty for junior developers much lower.

By exchanging command line, hard coded configurations and the need of coding PHP pages

with simple point and click pages DragonPHP enable developers with less experience to

create sophisticated CRUD applications with minimum code.

Nevertheless, even thou DragonPHP makes it easier to develop applications and tries to

overcome the coding problem, more experience developers may change and add its code to

each page in a very simple and organized way.

The initial conclusions taken from the survey which was sent to developers is very positive,

and clearly demonstrates that the overall opinion is that its conception and development

appeals to developers.

More work is still needed to take DragonPHP to the open world, but after the initial

impressions and feedback, DragonPHP will have a bright future.

PAGE 49

Chapter 8 - Bibliography

Ahmad, Z. A. (n.d.). PHP FRAMEWORK DESIGN WITH HIERARCHICAL MODEL-

VIEWCONTROLLER ARCHITECTURE.

Bartosz Porebski, K. P. (2011). Building PHP Applications with Symfony, CakePHP and Zend

Framework.

Dragos-Paul Pop*, A. A. (2013). Designing an MVC Model for Rapid Web Application

Development. ScienceDirect.

Glenn E. Krasner, S. T. (n.d.). A Cookbook for Using View-Controller User the ModelInterface

Paradigm in Smalltalk-80.

Google Trend. (2019). Retrieved from PHP Frameworks:

https://trends.google.com/trends/explore?q=laravel,Symfony,%2Fm%2F02qgdkj,Ca

kePHP,Zend

Guide to the Software Engineering Body of Knowledge Version 3.0. (n.d.).

https://cakephp.org/. (n.d.). Retrieved from CakePHP.

https://code.tutsplus.com/tutorials/should-you-use-a-php-framework-five-pros-and-cons--

cms-28905. (n.d.). Retrieved from Should You Use a PHP Framework? .

https://codeigniter.com/. (n.d.). Retrieved from CodeIgniter.

https://en.wikipedia.org/wiki/Cascading_Style_Sheets. (n.d.). Retrieved from

Cascading_Style_Sheets.

https://en.wikipedia.org/wiki/Category:PHP_frameworks. (2018). Retrieved from PHP

Frameworks.

https://en.wikipedia.org/wiki/Design_science_(methodology). (n.d.). Retrieved from

Design_science_(methodology).

https://en.wikipedia.org/wiki/HTML. (n.d.). Retrieved from HTML.

https://en.wikipedia.org/wiki/JavaScript. (n.d.). Retrieved from JavaSript.

https://en.wikipedia.org/wiki/Multitier_architecture. (n.d.). Retrieved from

Multitier_architecture.

https://en.wikipedia.org/wiki/Mysql. (n.d.). Retrieved from Mysql.

https://en.wikipedia.org/wiki/PHP. (n.d.). Retrieved from PHP.

https://en.wikipedia.org/wiki/yaml. (n.d.). Retrieved from Yaml.

https://justpaste.it/gd76. (n.d.). Retrieved from Why you should NOT use a web framework.

https://laravel.com/. (n.d.). Retrieved from Laravel.

PAGE 50

https://softwareengineering.stackexchange.com/questions/49488/when-not-to-use-a-

framework. (n.d.). Retrieved from When NOT to use a framework [closed].

https://stackoverflow.com/questions/5925356/reasons-to-not-use-a-php-framework. (n.d.).

Retrieved from Reasons to NOT use a PHP Framework? [closed].

https://symfony.com/. (n.d.). Retrieved from Symfony.

https://www.codementor.io/juzerali/5-reasons-bad-developers-will-give-for-not-using-an-

application-framework-ejxogcgb7. (n.d.). Retrieved from 5 Reasons Bad Developers

Will Give for Not Using an Application Framework.

https://www.johnmorrisonline.com/dont-use-php-frameworks/. (n.d.). Retrieved from Why I

don’t use PHP frameworks.

https://www.yiiframework.com/. (n.d.). Retrieved from YiiFramework.

McArthur, K. (2008). Pro PHP Patterns, Frameworks, Testing and More.

MVP. (2019). Retrieved from

https://en.wikipedia.org/wiki/Model%E2%80%93view%E2%80%93presenter

MVVM. (2019). Retrieved from

https://en.wikipedia.org/wiki/Model%E2%80%93view%E2%80%93viewmodel

Natalya Prokofyevaa, V. B. (2017). Analysis and Practical Application of PHP Frameworks in

Development of Web Information Systems. Procedia Computer Science 104.

NIIT. (2001). Special Edition Using C#. Que.

PHP Frameworks. (2018). Retrieved from http://phpframeworks.com

Riehle, D. (2000). Framework Design: A Role Modeling Approach.

Vaishnavi, V. a. (2008). Design Science Research Methods and Patterns. 1st Edn.

w3Techs. (2019). Retrieved from

https://w3techs.com/technologies/overview/programming_language/all

Web application development with Laravel PHP. (n.d.). Jamal Armel.

Wikipedia. (2019). Retrieved from Markup Language:

https://en.wikipedia.org/wiki/Markup_language

